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Abstract
Density functional calculations, within the local density approximation, are
used to investigate the isotropic pressure dependence of the geometry and
�-point phonons of TiO2 rutile over the range −8.6–8.6 GPa. The TO A2u mode,
which is the c-axis ferroelectric mode,vanishes at P ∼ −4 GPa, thereby leading
to a crystal instability and a possible ferroelectric phase transition. The effects
of a uniaxial strain along the c-axis on the geometry and the TO A2u mode are
also investigated. This mode vanishes when the lattice parameter along c is just
over 3% larger than in the unstrained case, again leading to a ferroelectric phase
transition. Based on this result, it is suggested that expanded rutile structures
might be created with enhanced dielectric properties by, for instance, thin film
growth on a substrate with a small lattice mismatch. The microscopic origin
of the ferroelectric stabilization is investigated and shows similarities with the
case of perovskite oxides. The Raman-active B1g mode unusually softens as the
pressure increases and the atomistic origin of this behaviour is explained. The
critical pressure for the second-order phase transition to a CaCl2-type structure
induced by this softening (when combined with an orthorhombic distortion)
is calculated to be 13 GPa. The results for the pressure dependence of the
geometry and lattice dynamics agree well with the available measured data.

1. Introduction

The dielectric constants of TiO2 rutile are unusually high for a material of its class and make
it very useful in many areas of application. Despite their name, the dielectric constants vary
when varying physical conditions such as, for instance, pressure and temperature. Knowing
their temperature and pressure dependence helps rationalize and tune the performance of this
material in technological applications. Several experimental investigations have analysed the
influence of pressure and temperature on the dielectric properties of TiO2 rutile. Parker [1],
for instance, measured the variation of the static dielectric constants of rutile at values of
temperature between 1.6 and 1060 K. She found that they increase dramatically as the
temperature decreases. Normally, this behaviour occurs on the approach of a temperature-
driven ferroelectric phase transition. In this case, however, the temperature reaches 0 K
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before the ferroelectric transition occurs. Thereby, TiO2 rutile is classified as an incipient
ferroelectric. Subsequently, measurements of the vibrational spectra [2, 3] explained the
origin of this property at the atomistic scale. These studies clearly evidenced a link between
the temperature dependence of the c-axis dielectric constant and the softening of the transverse
optic (TO) A2u vibrational mode of the atoms as the temperature decreases.

KTaO3 and CaTiO3 are also incipient ferroelectric materials. Postnikov et al [4] showed,
based on the full-potential linear muffin-tin orbital method, that an isotropic expansion of the
volume of KTaO3 leads to the stabilization of the Ta atom in an off-centre position, thereby
inducing a ferroelectric instability. Wang et al [5] performed first-principles calculations
on CaTiO3 and showed that the ferroelectric phase is favoured over the paraelectric one if
the cell volume is isotropically expanded by 10%. In the present paper it will be shown
that in a similar way a ferroelectric instability can be induced in TiO2 rutile by applying a
negative isotropic pressure and the critical pressure for the ferroelectric phase transition will
be quantified. Both KTaO3 and CaTiO3 are perovskite oxides and hence inherently different
from the rutile system investigated here. Therefore this work shows that the possibility
of inducing a ferroelectric phase transition by applying negative isotropic pressure is not
specific of the perovskite structure only. Also, the microscopic origin for the pressure-induced
stabilization of the ferroelectric phase in rutile will be investigated and conclusions will be
drawn about similarities and differences between this case and the origin of this phenomenon
in the perovskite oxides.

In addition, it will be shown that in the case of rutile the ferroelectric phase can be
stabilized also by applying anisotropic negative pressure, more specifically uniaxial strain. To
the authors’ best knowledge, the possibility of inducing a ferroelectric phase transition in an
incipient ferroelectric by applying uniaxial strain has not been previously reported. This result
may have important technological consequences. Whilst it is difficult to produce isotropically
expanded samples of these materials, uniaxially strained lattices can be produced by growing
them as thin films on a substrate with a small lattice mismatch. The calculations reported
here suggest that a compression by just 1% of the lattice constants in the a–b plane of rutile
is sufficient to trigger the ferroelectric phase transition and a compression by 0.8% already
produces a ten-fold increase in its c-axis dielectric constant. These results therefore suggest
that by controlled epitaxial growth rutile can be produced in thin films with a dielectric constant
enhanced at will and can thus be tailored for technological applications.

All results in this work are obtained via calculations, based on density functional theory
(DFT), of the �-point lattice dynamics of rutile over a range of either hydrostatic pressures or
uniaxial strains. Recently, Dubrovinsky et al [10] discovered,by means of ab initio calculations
in conjunction with experiment, the existence of a new crystalline phase of TiO2 rutile, called
cotunnite, which is the hardest known oxide. This confirms the predictive power of ab initio
calculations and the important role played by the combination of modelling and experiment.

To the authors’ knowledge, no theoretical investigation, using either empirical potentials
or electronic structure methods, of the effects of pressure on the atomic vibrations of rutile
has been reported yet. At zero pressure, both rigid-ion models [2] and shell models [11] have
been used to investigate the vibrational properties of rutile. However, despite a great deal of
research, including the recent use of variable charge models, it has not been possible to generate
a transferable model of titania which simultaneously reproduces its structural, dielectric and
vibrational properties [12, 13]. Lee et al [14] used a variational approach to DFT, within the
local density approximation (LDA) to the exchange–correlationenergy, to compute the �-point
vibrational modes, the dielectric tensor and the Born effective charges of bulk TiO2 rutile at
zero pressure. The resulting phonon frequencies agree with experiment to within a few per cent.
Our recent report [15] confirmed this result and explored the influence of more sophisticated
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approximations than LDA on the �-point phonons of rutile at zero pressure. It was found that
the gradient-corrected functionals PW91 [16] and the PBE [17], which generally lead to an
improvement of ground-state energetics in solids, are much less accurate compared to LDA in
the prediction of the �-point vibrational frequencies of rutile at zero pressure.

The present calculations, performed within LDA, provide the pressure dependence of
all �-point phonons of rutile. Among them, only the B1g mode unusually softens as the pressure
increases. This phenomenon generally hints at the onset of a mode instability and there has been
debate in the past as to whether this observation explains pressure-induced transformations of
rutile [3, 18–24]. Nagel and O’Keeffe [18] noticed that the atomic displacements associated
with this mode transform the rutile structure into a CaCl2-type structure and suggested that this
is the transformation observed by Nicol and Fong [19]. Later, Mammone et al [21] proved,
based on factor group analysis, that the phase detected by Nicol and Fong cannot have the
CaCl2-type structure. In fact the experimental studies performed so far [21–24] have shown
that TiO2 rutile undergoes a sluggish phase transformation to the columbite structure (α-PbO2-
type) over a broad range of pressure (5–12 GPa) and no evidence of a rutile to CaCl2 transition
has been seen. On the theoretical side, computational investigations of TiO2 under pressure
have been performed based on either empirical atomistic methods [12] or more detailed ab initio
electronic structure calculations [25]. In these studies, however, the CaCl2-type structure was
not considered.

In SiO2, the B1g mode also softens when increasing the pressure and this does cause a
phase transition from stishovite, which has the rutile structure, to the CaCl2-type structure at
about 50 GPa [26, 27]. In addition, this transformation of stishovite is known to be of second
order [28]. Concerning TiO2, there has been a debate as to whether a phase transition from
rutile to a CaCl2-type would be of first or second order [3, 18, 21–23]. In the present paper the
origin of the softening of the B1g mode with increasing pressure is analysed and the critical
pressure for the structural instability related to this mechanism is calculated. Furthermore,
conclusions about the nature of the possible phase transition to a CaCl2-type structure driven
by this mode are drawn.

In the following section of this paper, details of the computational method are illustrated.
The changes in the structural parameters induced by hydrostatic pressure and by uniaxial strain
applied along the c-axis are examined in sections 3.1 and 3.2, respectively. In section 3.3 the
hydrostatic pressure dependence for all �-point vibrational modes is presented. Sections 3.4
and 3.5 report the softening of the TO A2u mode and the consequent ferroelectric phase
transition induced by hydrostatic pressure and uniaxial strain, respectively. The atomistic
origin of the ferroelectric stabilization is investigated in section 3.6. The softening of the
Raman-active B1g mode with increasing positive hydrostatic pressure and the nature of the
possible phase transition related to this mechanism are discussed in section 3.7. Finally, all
findings are summarized and final remarks are drawn in section 4.

2. Computational method

The present calculations are based on a plane-wave pseudopotential implementation of density
functional theory [29, 30] and use the CASTEP [31] program. A number of calculations
are repeated using the CRYSTAL [32] software package, where the crystalline orbitals are
expanded as a linear combination of atom-centred Gaussian orbitals (LCAO) with s, p
or d symmetry. CRYSTAL is used here for all electron calculations, i.e. with no shape
approximation to the electronic charge density or ionic potential. The comparison of the
CASTEP and CRYSTAL results is used to verify that the results are independent of the
particular numerical scheme used to implement DFT. For both CASTEP and CRYSTAL,
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(a)

(b) (c)

Figure 1. Atomic displacements associated with the eigenvectors relative to the A2u (a), softest Eu
(b) and B1g (c) modes. Full and empty circles represent the Ti and O atoms, respectively. In (a)
the vertical axis is the c-axis, whilst in (b) and (c) the c-axis is perpendicular to the plane of the
figure.

the details of the calculations are given elsewhere [15]. The LDA functional, which relies on
accurate calculations of the exchange–correlation density in a homogeneous electron gas, is
selected for the present calculations. As shown elsewhere [15], this functional is an excellent
choice and should be preferred to gradient-corrected functionals such as PW91 [16] and
PBE [17], for describing the vibrational properties of TiO2 rutile. The implementation of
LDA chosen for the present work follows the recipe due to Ceperley and Alder [33].

The rutile structure, shown in figure 1(a), is primitive tetragonal (D14
4h, P42/mnm) with six

atoms per primitive unit cell. The two titanium atoms occupy positions (000) and ( 1
2

1
2

1
2 ), and

the four oxygen atoms occupy positions ±(uu0) and ±( 1
2 +u, 1

2 −u, 1
2 ). The calculations start

from the atomic coordinates and lattice parameters determined from neutron diffraction data
of the crystalline bulk system [34] at ambient pressure and are performed without constraint
(on symmetry or otherwise) until the magnitude of the average force on the atoms is less than
0.02 eV Å−1 and the change in total energy is less than 10−6 eV. Details of the calculations
under isotropic and anisotropic pressure are given in sections 3.1 and 3.2, respectively. For
the equilibrium geometry, the �-point vibrational harmonic frequencies and eigenvectors are
calculated via the finite difference scheme described previously [15].

3. Results and discussion

3.1. The variation of the structure with isotropic pressure

A full geometry optimization is performed for the system subject to discrete values of
hydrostatic pressure in the range −8.6–8.6 GPa. For any given value of pressure, P ,
all structural degrees of freedom are optimized, therefore giving the predicted equilibrium
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Table 1. Parameters of the linear fit to several equilibrium structural parameters as a function of
P: f (P) = f0 + f1 P . The parameters of the linear fit to the measured values [37] are given in
brackets when available. O1 and O2 are the nearest and next nearest neighbours of the Ti atom,
respectively.

Parameters f0 f1 (10−3 GPa−1)

a (Å) 4.551 (4.593) −7.73 (−8.62)

c (Å) 2.920 (2.957) −2.41 (−2.14)

u 0.3040 −0.14
c/a (Å) 0.642 (0.644) 0.56 (0.79)
� (Å3) 60.500 (62.384) −255.71 (−281.75)

Ti–O1 (Å) 1.929 −1.70
Ti–O2 (Å) 1.956 −4.27

geometry, by minimizing the enthalpy function H:

H = E + P�, (1)

with respect to all structural degrees of freedom. Here, E is the internal energy of the system
and � is the unit cell volume. A plot of the total energy as a function of the equilibrium unit
cell volume, �, was reported earlier [15] and gives a bulk modulus of 234.4 GPa, which is
in excellent agreement with previous LDA calculations [25] and compares fairly well with
experiment [35, 36]. Here, the equilibrium values for a, c and u against pressure are plotted,
together with the measured values [37], in figure 2. All calculated quantities are very close
to the experiment, although slightly underestimate it, over the whole P range. This is in
line with the general tendency of LDA to underestimate equilibrium volumes. In addition, the
measurements reported here were performed at room temperature. As reported previously [15],
the LDA equilibrium geometry is in particularly good agreement with that measured at low
T [34]. In order to highlight trends and for a more quantitative comparison with experiment, a
linear fit f (P) = f0 + f1 P of each structural parameter was performed. The results for a, c and
u are reported in figure 2, which shows that the assumption of a nearly linear P dependence
is justified. The resulting values of f0 and f1 for a, c, u, c/a, � and Ti–O bond distances are
reported in table 1. The dependence for a, c and � compares very well with the measured
dependence, provided that we discard the measured value of c at P = 7.6 GPa, which lies
outside the line that fits well all other experimental data. The calculated pressure dependence
is in particularly good agreement with that measured at low T . For instance, the volume
compressibility, κ = −( ∂ ln �

∂ P )T , derived from our data is equal to 4.22 ×10−3 GPa−1. Samara
and Peercy [3] found κ = 4.73×10−3 GPa−1 at room T . However, they estimated a decrease in
κ of ∼7% between 298 and 4 K. Thus, the estimated low T value of κ is ∼ 4.40×10−3 GPa−1,
only ∼4% larger than the calculated value.

The calculated pressure dependence of the parameter u, which locates the oxygen atoms
within the unit cell, is well fitted by a straight line. As shown in figure 2, the experimental
error bars for the measured values of u are such that a precise quantitative comparison is
meaningless. However, at all pressures, the calculated values are close to the range of values
covered by the experimental error bars.

It is worth noting that a decreases approximately three times faster than c as P rises. As
it was postulated before [38], this may be due to metal–metal repulsion parallel to c across the
shared octahedral edge. As a consequence, the c/a ratio increases with pressure, in agreement
with experimental observations [37, 38].

Table 1 also shows the coefficients of the linear fit for the two closest Ti–O contacts.
As seen experimentally [37], the longest Ti–O distance shrinks faster than the shortest
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Figure 2. The variation of the equilibrium structural parameters a, c and u with pressure P .
Squares and circle correspond to the calculated and measured values, respectively. The linear term
of the calculated and measured pressure dependence is represented with dashed and solid lines,
respectively. The experimental error bars are shown for the parameter u only as they lie within the
size of the circles for the other parameters.

distance. Also, the difference between the two distances is reduced as the pressure increases.
Experimentally, this trend is reversed at ∼8 GPa and a linear extrapolation from the present
calculations suggests that, at T = 0, the trend inversion occurs at ∼9 GPa.

Muscat et al [25] performed analogous calculations within the Hartree–Fock
approximation. In agreement with our findings, all structural parameters vary linearly
with pressure. In these previous calculations, a and c systematically underestimate and
overestimate, respectively, the measured values and therefore lead to values of � in closer
agreement with experiment.

3.2. The variation of the structure with uniaxial strain

To investigate the effects of a uniaxial strain along the c-axis upon the structure of bulk rutile,
the lattice parameter c is constrained to have values 2, 4 and 6% larger than the equilibrium
value at zero pressure. For each of these enlarged values of c the lattice parameters in the
a–b plane as well as all internal atomic coordinates are optimized. Figure 3(a) reports the
variation of the lattice constant a (a = b as the structure is tetragonal) as a function of c. As
expected, a decreases as c increases, because of the tendency of the system to preserve the
unit cell volume, �. The decrease in a, however, is insufficient to preserve the volume, which
increases slightly, as illustrated in figure 3(b). For instance, when c is strained by ∼3% the
volume increases by roughly 1%. Figure 3(c) shows that the parameter u, which determines
the fractional coordinates of the oxygen atoms, increases only very marginally with c. Figure 3
also shows that, as in the case reported in the previous section, the structural parameters vary
linearly with the strain over the range considered.



Pressure-induced instabilities in bulk TiO2 rutile 279

0.98

0.99

1

a/
a 0

1 1.02 1.04 1.06

c/c0

0.998

1

1.002

1.004

u/
u 0

1

1.01

1.02
Ω

/Ω
0

(a)

(b)

(c)

Figure 3. Relative variation of the structural parameters as a function of the uniaxial strain along
the c-axis. In all cases the subscript ‘0’ refers to the value at zero pressure and zero strain. a is the
lattice constant in the a–b plane, � is the unit cell volume and u locates the oxygen atoms within
the unit cell.

3.3. Vibrational frequencies versus pressure

Starting from the optimized geometries at each pressure, the �-point vibrational harmonic
frequencies and eigenvectors are calculated. As explained in a recent report [15], the present
calculations do not include the long-range electrostatic fields that cause the frequencies of the
longitudinal optic (LO) modes to split from their transverse (TO) counterparts in the long-
wavelength limit. Therefore only the frequencies of the TO phonons are reported here. The
close agreement between the calculated frequencies at zero pressure and the experimental
values [2, 39, 40] and other LDA calculations [14] has been demonstrated previously [15].
It was found that the calculated frequencies are in excellent agreement with the measured
frequencies, especially if compared with the low-temperature (T ∼ 4 K) data1. The deviation
from experiment is ∼13 cm−1 at most and is often much smaller than that. For instance,
the deviation drops to no more than ∼2 cm−1 for the two stiffest modes, B2g and A1g, and
remains small also for several of the softer modes. It is known, however, that the softer
modes are more affected by numerical inaccuracy and carry the largest error bars. The atomic
displacements associated with the modes that will be discussed in detail below, i.e. the A2u,
softest Eu and B1g modes, are shown in figure 1. Despite the soft nature of these modes,
there is good agreement with experiment. The calculated frequency for the A2u mode is
154.4 cm−1 and the low-temperature measurements give 142 cm−1 [2] and 144 cm−1 [39, 40].
The present work predicts the softest Eu mode to have a frequency of 191.4 cm−1 which
compares well with the measured values of 189 cm−1 [2] and 183 cm−1 [39, 40]. To the
best of the authors’ knowledge, low-temperature experimental data for this frequency have not

1 The present calculations do not include the effects of temperature and therefore the calculated properties correspond
to the zero-temperature case.
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Table 2. Calculated frequencies, logarithmic pressure derivatives and mode Grüneisen parameters,
γ , of the �-point phonons. The available measured mode Grüneisen parameters [3] are reported
in brackets.

Modes ω(P = 0) (cm−1)

(
∂ ln ω

∂ P

)
T

(10−2 GPa−1) γ

B2g 824.7 0.63 1.49
A1g 611.6 0.74 1.76 (1.59)
Eu (TO) 488.4 0.40 0.95
Eg 463.2 0.69 1.64 (2.43)
A2g 421.7 0.17 0.40
B2

1u 393.0 1.12 2.66
Eu (TO) 383.9 0.99 2.35
B1g 137.0 −2.62 −6.21 (−5.03)

B1u
a 104.0 1.73 4.10

Eu (TO)a 191.4 3.89 9.21
A2u (TO)a 154.4 5.80 13.74 (13.32)

a ln ω does not vary linearly with P for negative values of P . Thus, the logarithmic pressure
derivative and the Grüneisen parameter of these modes are obtained from the data at non-negative
pressure only.

been reported so far. The B1g computed frequency is 137.0 cm−1 which compares well with
the measurements (142 cm−1 [2] and 143 cm−1 [39, 40]). For these specific frequencies the
comparison with previous similar calculations [14] is less satisfactory. Lee et al [14] obtained
176.1 and 164.8 cm−1 for the A2u and Eu modes, respectively, and 125.2 cm−1 for the B1g

mode. These discrepancies probably arise from the slight differences in the equilibrium lattice
constants predicted by the calculations. The zero-pressure equilibrium lattice parameters
predicted by these calculations are a = 4.545 Å and c = 2.919 Å. The values found by Lee
et al [14] are a = 4.536 Å and c = 2.915 Å. Although these structural parameters differ only
by a fraction of a per cent, this difference is amplified in the calculation of these frequencies
due to their extreme sensitivity to the lattice parameters. Therefore, small differences in the
parameters can lead to sizeable differences. For example, the ordering of the A2u and Eu

frequencies is opposite in the two calculations. Although the present calculations reproduce
the measured ordering, due to the sensitivity of the properties investigated in this work the
quantitative information provided here should be considered as an estimate of the true values.
Figure 4 illustrates the pressure dependence of the calculated frequencies. In table 2 the zero-
pressure frequencies, ω, are reported together with their logarithmic pressure derivatives and
the mode Grüneisen parameters γ = (− ∂ ln ω

∂ ln �
)T = 1

κ
( ∂ ln ω

∂ P )T . The values of γ were derived
from the latter expression, where the value of the volume compressibility, κ , is obtained by
the present calculations as described in section 3.1. Overall, the calculated mode Grüneisen
parameters agree well with the available measured values [3], reported in brackets in table 2.
A more detailed comparison with experiment will be done for the specific modes analysed in
the following sections.

3.4. Softening of the c-axis ferroelectric mode as a function of isotropic pressure

The TO A2u mode, the only polar mode in rutile along the c-axis, displays the largest Grüneisen
parameter of all modes investigated here. As shown in figure 1(a), this mode involves a
rigid displacement of the Ti sublattice along the c-axis and an analogous displacement of the
O sublattice but with opposite sign. Samara and Peercy [3] measured the pressure dependence
of the c-axis dielectric constant, εc, over the range 0–4 kbar at several temperatures, and used
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Figure 4. Pressure dependence of the �-point vibrational frequencies of TiO2 rutile. The labelling
of the modes follows [2], where the eigenvectors relative to each mode are also shown. The lines
only provide a guide for the eye.

these data to derive the pressure dependence for the TO A2u frequency. They found a value of
(5.9 ± 0.15) × 10−2 GPa−1 for the logarithmic pressure derivative of its frequency. Our data
extend over a much wider range and a linear fit to the non-negativepressure values gives a value
of 5.8×10−2 GPa−1, in excellent agreement with this measurement. The computed Grüneisen
parameter, γ , of this mode is 13.74, in excellent agreement with the low T experimental γ ,
equal to 13.32 [3].

The variation of the total energy with the lattice distortion along the mode is displayed in
figure 5 for three values of pressure (P = −8.6, 0 and +8.6 GPa). As the pressure decreases, the
positive curvature around the equilibrium atomic positions at zero pressure quickly decreases
and eventually becomes negative. The frozen phonon approach [41] can be used to extract the
harmonic frequency from these energy profiles. The result is shown in figure 6. The frequency
decreases with pressure, vanishes at ∼−4 GPa and is imaginary below this pressure. Therefore,
the present calculations predict that, at P ∼ −4 GPa, rutile becomes unstable with respect to
a distortion along the eigenvector of this mode. Because this is the ferroelectric mode along
the c-axis, this result implies that bulk TiO2 rutile is near a ferroelectric phase transition that
can be triggered by applying negative isotropic pressure to the crystal. Figure 4 shows that for
values of pressure below the transition pressure the minimum energy geometry is one where
the (normally coincident) Ti and O planes perpendicular to the c-axis are slightly separated.
At P = −8.6 GPa this separation is ∼0.06 Å.

TiO2 rutile has a positive thermal expansion coefficient, i.e. its volume expands as
T increases. However, as T increases the frequency of this mode increases rather than
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Figure 6. Harmonic frequency of the A2u vibrational mode as a function of pressure. The curve
only provides a guide for the eye.

decreases. Samara and Peercy [3] have explained this apparent paradox by separating the
overall temperature effect into a pure-volume and a pure-temperature contribution. As T is
increased, the pure-volume effect tends to lower the frequency, whereas the pure-temperature
effect, which dominates, increases the frequency. The present work provides a rationale for
this behaviour, which will be illustrated in section 3.6.

Because of the sharp increase in the dielectric constant as the ferroelectric transition is
approached, we estimate that if TiO2 rutile can be produced with a cell volume ∼2% larger than
its equilibrium value at low T , one would obtain a material with highly enhanced dielectric
properties. Unfortunately, because of the pure-temperature effect on the phonon frequency, this
cannot be achieved through thermal expansion. ‘Chemical’ mechanisms for lattice expansion
may be possible through, for instance, the insertion of larger atoms as substitutional defects
that would not affect the electronic and chemical properties of the system or atom intercalation
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into the lattice [42]. It is also possible that the largely enhanced dielectric properties of
nanostructured rutile-phase titania measured by Ye et al [43] are related to the volume effects
predicted here.

As mentioned in section 1, the possibility of inducing a ferroelectric phase transition
by applying negative isotropic pressure was found for other incipient ferroelectric materials,
namely KTaO3 [4] and CaTiO3 [5]. Both these systems, however, have the perovskite structure
and this is the first report of such an effect occurring for the rutile structure. An interesting
question arises as to whether the microscopic mechanisms at the origin of the ferroelectric
stabilization in these two different structures have similarities. This question will be addressed
in section 3.6.

The second largest mode Grüneisen parameter in table 2 refers to the softest TO Eu

mode, which is the analogue of the A2u mode in the a–b plane (see figure 1(b)). This mode
also softens as the pressure diminishes and eventually becomes imaginary. A third-order
polynomial fits well the obtained data for the pressure dependence of this frequency and can
be used to extrapolate the results to zero-frequency in order to estimate the predicted transition
pressure. This procedure yields a critical pressure of about −15 GPa. In summary, a much
larger negative pressure would be needed to trigger an instability along this mode compared
to the analogous mode along the c-axis and it is unlikely that the rutile phase is stable up to
such very large values of negative pressure.

3.5. Softening of the c-axis ferroelectric mode as a function of uniaxial strain

A ferroelectric phase transition brought about by the softening of the c-axis ferroelectric mode
can also be induced by uniaxial strain along the same axis. This is illustrated in figure 7, which
reports the shape of the energy profile for a lattice distortion along the A2u mode for several
values of the uniaxial strain. These profiles can be used to extract the frequency of the mode as
a function of the strain. The outcome, reported in figure 8, shows that the frequency decreases,
vanishes when the strain in c is just over 3% and then becomes imaginary. Thus, the present
calculations predict that rutile will undergo a ferroelectric phase transition if c is increased by
just over 3%.

As the A2u mode is the only ferroelectric mode along the c-axis, the Lyddane–Sachs–Teller
relation [44] for the c-axis reduces to:

εc

ε∞,c
=

(
ω f,LO

ω f,TO

)2

, (2)

where ω f denotes the frequency of the TO A2u mode. This equation could be used to extract the
volume dependence of εc if the volume dependence of all the other quantities in the equation
were known. Lee et al [14] showed that the LO–TO splitting in TiO2 rutile at zero pressure is
enormous, with ω f,LO = 769.3 cm−1, nearly 600 cm−1 higher than its TO counterpart. The
TO mode corresponds to zero electric field and, therefore, the restoring forces acting on the
vibrating atoms are mostly due to the local atomic environment. In addition to these forces,
the atoms vibrating in the LO mode are subjected to a force due to the long-range electric
field. The LO frequency is much larger than the TO frequency and this suggests that the forces
generated by the electric field dominate in the determination of the LO frequency. Based on
this argument, it is generally expected that the pressure dependence of the TO mode is stronger
than that of the LO mode because the pressure affects the local environment. Therefore,
just for the purpose of gaining an indication of the pressure dependence of εc as the phase
transition is approached, the pressure dependence of ε∞ and ω f,LO can be neglected because
the main contribution to the change in εc will be due to ω f,TO approaching zero. Under this
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Figure 7. Total energy variation per unit cell as a function of the atomic displacements along the
A2u vibrational mode. 	z labels the variation in the z-component of the Ti–O distances. The curves
only provide a guide for the eye. Triangles and the solid curve correspond to zero uniaxial strain
along the c-axis, circles and the dashed curve to a 2% strain; the data at 4% strain are represented
as squares and dotted curve. Crosses and the dash–dotted curve refer to a 6% strain. For each
value of the strain, the origin of the energy axis coincides with the total energy of the undistorted
structure at that strain.
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Figure 8. Harmonic frequency of the A2u vibrational mode as a function of uniaxial strain along
the c-axis. The curve only provides a guide for the eye.

approximation the pressure-dependent part of equation (2) reduces to:

εc = const

ω2
f,TO

. (3)

An estimate of the value of the constant is provided by the measured ambient-condition values
of εc = 166.2 and ω f,TO = 172 cm−1 [3]. Figure 9 shows the dramatic increase in the
c-axis dielectric constant on the approach of the ferroelectric phase transition caused by the
uniaxial strain. The present calculations predict this dielectric constant to double when c is
increased by 2% (corresponding to an decrease by 0.7% in a, as shown in figure 3(a)) and to
become larger than 1000 for a 2.5% increase in c. It is important to remark that this critical
strain is brought about by a decrease of just 1% in the lattice constants in the a–b plane. This
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Figure 9. c-axis dielectric constant as a function of the uniaxial strain along the same axis. The
curve only provides a guide for the eye.

modification of the cell parameters might be induced by epitaxially growing a thin film of TiO2

rutile on a substrate with a small lattice mismatch. In this way thin films with significantly
enhanced dielectric properties might be produced. To the authors’ knowledge, the possibility of
inducing a ferroelectric transition by applying uniaxial strain has not been previously reported.

One can now speculate that if a strain were applied to enlarge the lattice constants in the
a–b plane, the frequency of the softest TO Eu mode, which is the analogue of the A2u mode
in the a–b plane, would also soften and eventually lead to a ferroelectric instability in the
a–b-plane. However, because the zero-pressure value of the frequency of this mode is higher
than that of the A2u mode and the Grüneisen parameter is lower, it is reasonable to expect
that the critical value of the strain for stabilizing an in-plane ferroelectric distortion would be
higher than in the c-axis case. In addition, because this Eu mode is not the only ferroelectric
mode in the a–b plane (whereas the A2u mode is the only ferroelectric mode along the c-axis)
the influence of this mode’s softening on the dielectric constants is less obvious.

3.6. Origin of the ferroelectric stabilization

In order to understand the origin of the ferroelectric stabilization of TiO2 rutile, further
calculations have been performed to analyse the contributions to the total energy for the
system with a c-axis strain of 6%. An analogous analysis of the case in which the ferroelectric
stabilization is achieved through an isotropic expansion of the cell leads to the same qualitative
conclusions and therefore will not be presented. Figure 7 shows that, for a 6% strain, the
paraelectric geometry, i.e. where the Ti atom is at the centre of the O octahedron, is unstable
with respect to the ferroelectric geometry where the z-component of the Ti–O distance, 	z, is
equal to 0.12 Å.

The stability of the paraelectric and ferroelectric structures can be investigated by using
a simple ionic model. In this model, the Ti and O atoms are described as formally charged
ions (i.e. Ti4+ and O2−) and the short-range repulsion is represented by a Buckingham-type
potential [45]. When the ferroelectric distortion is applied, the Madelung energy decreases
by 0.727 eV whereas the short-range repulsive interaction increases by 1.011 eV. Therefore,
it is clear that in this simple model the short-range repulsive forces favour the paraelectric
geometry, whereas the long-range electrostatic interactions favour the ferroelectric geometry.
For the applied strain, the short-range forces prevail and the paraelectric phase is more stable
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Figure 10. Difference between the self-consistent total electron charge density and the one obtained
by overlapping spherical Ti4+ and O2− ions. A 6% strain along the c-axis is applied. The
smaller circles represent the Ti atoms and the larger circles represent the O atoms. The plane
shown is the plane through the Ti–O bonds parallel to the c-axis. Panels (a) and (b) refer to the
paraelectric and ferroelectric geometries, respectively. The charge-density contour-lines range
from 0 to 0.07 e Å−1 and are separated by a 0.008 e Å−1 interval.

(This figure is in colour only in the electronic version)

by 0.284 eV. However, one can imagine that if the lattice is expanded further, the short-range
repulsive forces would decrease and eventually the ferroelectric phase would become the most
stable. This is evidenced by the fact that also in this model the frequency of the TO A2u mode
softens as the lattice is expanded.

This simple ionic model allows the effects of the short-range repulsion forces and long-
range electrostatic interactions to be separated but does not agree qualitatively with the DFT
calculations because it neglects the effects of covalency and electronic charge polarization. The
important role of these effects, however, is apparent when further analysis of the DFT data is
carried out. The difference between the self-consistent electron charge density and the charge
density obtained as an overlap of the spherical, formally charged ions highlights the presence of
these effects. Figure 10 shows two-dimensional plots of this electron charge density difference
for the unstable paraelectric (a) and stable ferroelectric (b) geometries. Both panels (a) and (b)
show a significant degree of polarization of the Ti ions. This evidence defies the general view
according to which charge polarization effects in oxides are largely dominated by the dipolar
polarization of the O ions. From the shape of the charge density isosurfaces around the Ti ion,
it is apparent that in the ferroelectric geometry a significant further polarization is added to the
polarization that exists in the paraelectric phase.

The Mulliken population analysis of the LCAO results shows that the ionicity of the system,
even at the zero-pressure and unstrained equilibrium geometry, is much lower than that of the
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formally charged ionic model. Moreover, the ferroelectric distortion causes a further slight
decrease in the ionicity of the system and the charge on the Ti atom is reduced from +2.08 to
+2.06. More specifically, the orbital population data show that the O 2p orbital donates electron
charge to the Ti 3d orbitals (mainly the dxz and dyz orbitals). Thus, the ferroelectric distortion
induces a back-donation of electrons from the oxygen to the titanium ions. This indicates
an increase in the degree of hybridization between the orbitals involved in this process. It is
this enhanced hybridization that reduces the short-range repulsion and therefore stabilizes the
ferroelectric phase. This effect has been observed by several authors in perovskite oxides such
as BaTiO3 [6, 7], PbTiO3 [7], KTaO3 [8], SrBi2Ta2O9 [9] and CaTiO3 [5]. Cohen and co-
workers [6, 7], in particular, illustrated how this hybridization is essential to the stabilization
of the ferroelectric phase in BaTiO3 and PbTiO3. Their linearized augmented plane-wave
calculations showed that if ‘the Ti d energy parameter is raised up above the 4d asymptote,
effectively removing the Ti 3d states from the variational basis, the ferroelectric state is lost and
the formerly unstable mode becomes a high-frequency mode’. A similar result is generated
from the present LCAO calculations when the lowest Ti d-orbital is removed from the basis set.
Cohen and co-workers concluded that for ferroelectric perovskites of type ABO3 in general,
‘hybridization between the B cation and O is essential to weaken the short-range repulsion
and allow the ferroelectric transition’. We can now widen the significance of this conclusion
by adding that this effect is not typical of perovskites only, but also occurs in rutile. What
links these structures is the existence of an O octahedron occupied by a cation whose lowest
unoccupied states are d-states and where the level of ionicity is significantly lower than the
formal ionicity.

The charge redistribution induced by the ferroelectric distortion is very slight and is
therefore consistent with the small energy difference (∼20 meV) between the paraelectric
and the ferroelectric phases predicted by the calculations for a 6% strain along the c-axis. The
subtlety of these effects evidences the existence of a very delicate balance between the short-
range forces and the long-range electrostatic interactions. At zero pressure and zero strain
this balance only very slightly favours the paraelectric phase. The high dielectric constants
and the incipient ferroelectricity of rutile flag the vicinity of an inversion in this balance,
i.e. of a ferroelectric phase transition. The application of a negative isotropic pressure or of a
uniaxial strain lowers the short-range repulsion and therefore tips the balance in favour of the
ferroelectric phase.

Incidentally, this result also explains why thermal expansion counter-intuitively causes a
hardening of the TO A2u mode. As mentioned in section 3.4, Samara and Peercy [3] separated
the pure-volumecontribution of the thermal expansion from the pure-temperaturecontribution.
The pure-volume contribution causes a softening of this mode, in agreement with the present
work. However, the pure-temperature contribution, which dominates in this instance, causes
a hardening of the mode. In the light of what has just been described, the reason for this
temperature effect becomes clear. A temperature increase causes an increase in the effective
short-range interatomic repulsion and reduces the influence of the long-range electrostatic
interactions.

3.7. B1g mode versus isotropic pressure and the rutile to CaCl2-type transition

The Grüneisen parameter γ for the B1g mode (shown in figure 1(c)), is negative, meaning
that the mode frequency unusually decreases as the pressure increases. The calculated
logarithmic pressure derivative and relative γ agree well with the measured values of
(−2.38 ± 0.2) × 10−2 GPa−1 [3, 22] and −5.03 [3], respectively. As described in section 1,
this negative Grüneisen parameter led us to speculate about the existence of a phase transition
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Figure 11. Unit cells of rutile and CaCl2-type structures projected on the (001) plane. The small
filled circles represent the positions of the O atoms in the unit cell of rutile (solid line). The empty
circles represent the positions of the O atoms in the unit cell of the CaCl2-type structure (dashed
line). The filled square represents the position of the central Ti atom in both structures.

which may be induced by this mode softening. As shown in figure 11, an atomic displacement
along the B1g mode transforms rutile into a CaCl2-type structure, when accompanied by an
orthorhombic deformation of the unit cell. This observation is supported by the evidence [26–
28] that this is the mechanism for the transition from stishovite (the rutile-structured SiO2) to
the CaCl2-type structure, which occurs at about 50 GPa. In order to establish the feasibility
of such a phase transformation, the pressure dependence of the shear modulus, c11 − c12, is
investigated here. Starting from the equilibrium geometry of rutile at each pressure, the unit
cell is slightly deformed under an orthorhombic strain and the atomic positions within the cell
are reoptimized. This procedure allows for the coupling between the unit cell distortion and a
distortion of the atomic positions along the B1g mode. The result is reported in figure 12. The
zero-pressure value of the shear modulus predicted by the present calculations is 95.7 GPa, in
excellent agreement with the experimental value of 93 GPa [46]. As the pressure increases, the
shear modulus decreases, vanishes at about 13 GPa and becomes negative. This indicates the
occurrence of an instability in favour of the orthorhombic CaCl2-type structure. The instability
will lead to an actual phase transition if rutile can exist as such up to this critical pressure. This
result is confirmed by performing full geometry optimizations starting from orthorhombically
strained unit cells of rutile at pressures between 10 and 20 GPa. Below 13 GPa the system
recovers the tetragonal rutile structure and there is a continuous and smooth change to an
orthorhombic structure as the pressure increases above 13 GPa. Figure 13 illustrates this point
by showing the unit cell volume as a function of pressure for the two phases of rutile and
CaCl2. A similar smooth behaviour across the transition pressure is observed for the lattice
parameters a, b and c and for the positions of the oxygen atoms within the cell. Further
evidence for the continuous, i.e. second-order, nature of the transition is shown in figure 14,
which illustrates the smooth change in the total energy per cell across the transition pressure.
The analogous transition of stishovite, the rutile-structured SiO2, occurs at about 50 GPa.
Density functional calculations [28] similar to the present study have predicted the transition
to be of second order and to occur at around 47 GPa, in excellent agreement with experiment.



Pressure-induced instabilities in bulk TiO2 rutile 289

P [GPa]

-100

-50

0

50

100

c 11
- 

c 12
 [G

P
a]

0 3 6 9 12 15

Figure 12. Calculated pressure dependence of the shear modulus, c11 − c12, of TiO2 rutile.
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Figure 13. Pressure dependence of the unit cell volumes of rutile (circles) and CaCl2 (squares)
type structures.

At present, there is no experimental evidence of the existence of a CaCl2-type structure for
TiO2. It may be that the rutile to columbite transformation occurs at values of pressure just
below the critical pressure for the rutile to CaCl2 transition and thus precludes the observation
of the latter transition. However, the critical pressure for this transition predicted here is close
to the range of pressure (5–12 GPa) over which the sluggish rutile to columbite transition
is observed. Furthermore, the second-order nature of the rutile to CaCl2 transition causes
only subtle structural changes which may be difficult to detect experimentally. Therefore, it
is not possible at present to establish conclusively the existence of a transition to the CaCl2-
type structure in TiO2. Detailed structural measurements for well equilibrated samples in the
pressure range 5–12 GPa would be of great interest.

The extrapolation to zero frequency obtained from the present calculations shows that the
B1g frequency does not vanish at the predicted value for the rutile to CaCl2 transition pressure.
However, this observation is not in conflict with the second-order nature of the transition, as
was argued by Samara and Peercy [3]. As discussed in detail by Karki et al [28] for the case of
SiO2, although the transition is of second order, the B1g mode does not soften completely at the
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Figure 14. Total energy per cell as a function of the unit cell volume for rutile (circles) and the
CaCl2-type structure (squares).

transition point if an orthorhombic distortion of the cell is not allowed to happen simultaneously
with atomic displacements along the vibrational mode.

The present calculations also help in gaining insight into the mechanism for the softening
of the B1g mode induced by the increasing pressure if the contributions to the rise in the total
energy as the atoms are displaced along the mode are analysed. As the pressure increases, it is
the contribution of the electronic kinetic energy which decreases significantly and causes the
mode softening. The reason for this lies in the structural changes induced by the distortion.
Indeed, as the atoms are displaced along this mode, the Ti–O bond distances increase and so
do the closest O–O contacts. It is therefore reasonable to conclude that the softening occurs
because a displacement along the mode partially relieves the bond compression caused by the
pressure increase. The main effect of the relief of the bond compression is the decrease in the
kinetic energy of the valence electrons.

The remaining modes listed in table 2 have rather small Grüneisen parameters and it
is therefore unlikely that they may cause a pressure-induced transition. Experimental data
for their pressure dependence are available only for the Raman modes and at room T . It
is noticed that the calculated Grüneisen parameter for the A1g mode agrees very well with
the experimental value of 1.59 [3], but the agreement is significantly worse for the doubly
degenerate Eg mode, for which the measured value equals 2.43. Otherwise, the agreement
between the measured and calculated quantities in table 2 is good. It should be noted that this
is the first time that the pressure dependence of several of the �-point modes of TiO2 rutile has
been investigated.

All of the results discussed here were obtained within the plane-wave pseudopotential
implementation of DFT described in section 2. Calculations were repeated with the all-electron
LCAO scheme discussed in section 2. Apart from very slight quantitative differences, in all
cases the all-electron calculations agree well with the plane-wave, pseudopotential results, thus
confirming their independence of the particular numerical scheme used to implement DFT. In
particular, this confirms that the current results are not a spurious effect of the pseudopotentials
used.

4. Summary and concluding remarks

This paper presented density functional calculations of the geometry and �-point phonons of
TiO2 rutile over a range of hydrostatic pressures and c-axis uniaxial strains.
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The logarithmic pressure derivative of the frequencies with respect to the hydrostatic
pressure and the mode Grüneisen parameters were found to agree well with the available
experimental data.

The c-axis TO ferroelectric mode A2u decreases quickly as the hydrostatic pressure
decreases, vanishes at ∼−4 GPa and becomes imaginary, thereby leading to a crystal instability
with respect to a distortion of the crystal along this mode. Thus, rutile is found to be near a
ferroelectric phase transition that can be induced by applying negative hydrostatic pressure.

A similar transition occurs when the c-axis is strained by just over 3%. To the best of the
authors’ knowledge, the possibility of inducing a ferroelectric phase transition in an incipient
ferroelectric by applying anisotropic strain has not been previously reported. Because of the
dramatic increase in the static dielectric constants on the approach of a ferroelectric phase
transition, this result suggests the possibility of designing a TiO2 rutile-based material with
enhanced dielectric properties. Such structures might be synthesized via thin film growth on
a substrate with a small lattice mismatch. The present calculations suggest that a reduction by
0.8% in the lattice parameters in the a–b plane is sufficient to produce a ten-fold increase in
the c-axis dielectric constant.

The vicinity of the ferroelectric instability in TiO2 rutile is due to a very delicate
balance between short-range repulsive forces, which favour the paraelectric phase, and long-
range electrostatic forces, which favour the ferroelectric phase. The application of negative
hydrostatic pressure or uniaxial strain lowers the short-range repulsion, thereby leading to
the softening of this mode and eventually to the ferroelectric phase transition. It was found
that an increase in the hybridization between the Ti 3d and the O 2p orbitals is essential for
the stabilization of the ferroelectric phase. Previous studies had established that the same
mechanism stabilizes the ferroelectric phase in perovskite oxides. The present work now
extends the conclusions drawn about the origin of the ferroelectric stabilization in perovskites
to include a material based on the rutile structure.

In addition, the pressure-induced softening of the B1g mode and the corresponding phase
transformation to a CaCl2-type structure was investigated with the aim of quantifying the
critical pressure for the transition and analysing the atomistic origin of the softening. It was
found that the transition would occur at a pressure of ∼13 GPa if rutile could exist as such up
to the critical pressure. The crystal distortion along this mode relieves the Ti–O and closest
O–O bond compression caused by the increased pressure, thereby flattening the kinetic energy
profile along the mode as the pressure increases.
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